Deciphering the Archaeological Record:
Cosmological Imprints of Non-Minimal Dark Sectors

Jeff Kost
[IBS–CTPU]

[arXiv:1911.xxxxx]

collaborators on this work:
Keith R. Dienes [U. Arizona]
Fei Huang [U.C. Irvine/ITP-CAS]
Shufang Su [U. Arizona]
Brooks Thomas [Lafayette College]

University of Wisconsin

Wednesday, November 13th, 2019
dark matter = ??
dark matter = ??

• sits at the border between particle physics/astrophysics/cosmology
dark matter = ??

- sits at the border between particle physics/astrophysics/cosmology
- necessarily involves physics beyond the Standard Model
dark matter = ??

- sits at the border between particle physics/astrophysics/cosmology
- necessarily involves physics beyond the Standard Model
- occupies a sizeable fraction of the energy content of the universe
dark matter = ??

- sits at the border between particle physics/astrophysics/cosmology
- necessarily involves physics beyond the Standard Model
- occupies a sizeable fraction of the energy content of the universe

[source: Science/AAS]
dark matter = ??

- sits at the **border** between particle physics/astrophysics/cosmology
- necessarily involves physics **beyond the Standard Model**
- occupies a **sizeable fraction** of the energy content of the universe

unfortunately, not much known:

[source: Science/AAS]
dark matter = ??

- sits at the border between particle physics/astrophysics/cosmology
- necessarily involves physics beyond the Standard Model
- occupies a sizeable fraction of the energy content of the universe

unfortunately, not much known:
- production mechanism? (thermal/non-thermal?)

[source: Science/AAS]
dark matter = ??

- sits at the border between particle physics/astrophysics/cosmology
- necessarily involves physics beyond the Standard Model
- occupies a sizeable fraction of the energy content of the universe

unfortunately, not much known:

- production mechanism? (thermal/non-thermal?)
- one species? or many components?

[source: Science/AAS]
dark matter = ??

- sits at the border between particle physics/astrophysics/cosmology
- necessarily involves physics beyond the Standard Model
- occupies a sizeable fraction of the energy content of the universe

unfortunately, not much known:

- production mechanism? (thermal/non-thermal?)
- one species? or many components?
- interactions with SM? within dark sector itself?

[source: Science/AAS]
dark matter = ??

- sits at the **border** between particle physics/astrophysics/cosmology
- necessarily involves physics **beyond the Standard Model**
- occupies a **sizeable fraction** of the energy content of the universe

unfortunately, not much known:

- **production** mechanism? (thermal/non-thermal?)
- one species? or many components?
- interactions with SM? within dark sector itself?
- what **dynamics** is involved in establishing DM today?

[source: Science/AAS]
In this talk:
We are interested in how dark matter drives cosmological structure.
In this talk:
We are interested in how dark matter drives cosmological structure.
In this talk:
We are interested in how dark matter drives cosmological structure.
In this talk:
We are interested in how dark matter drives **cosmological structure**.

![Diagram](image-url)

deep inside the early universe, the dark matter phase-space distribution $f(p)$ determines the matter power spectrum $P(k)$.
In this talk:
We are interested in how dark matter drives cosmological structure.
In this talk:
We are interested in how dark matter drives cosmological structure.

To what extent can we find signatures or patterns in $P(k)$ tell us about early universe dynamics that produced the dark matter?
In this talk:
We are interested in how dark matter drives cosmological structure.

To what extent can we find signatures or patterns in $P(k)$ tell us about early universe dynamics that produced the dark matter?
In this talk:
We are interested in how dark matter drives **cosmological structure**.

To **what extent** can we find signatures or patterns in $P(k)$ tell us about early universe dynamics that produced the dark matter?
In this talk:
We are interested in how dark matter drives cosmological structure.

To what extent can we find signatures or patterns in $P(k)$ tell us about early universe dynamics that produced the dark matter?
PART I

early-universe dynamics \rightarrow DM phase-space distribution
In general, once the dark matter is produced in the early universe its properties are described by its phase-space distribution $f(\vec{x}, \vec{p}, t) \approx f(\vec{p}, t)$: homogeneity/isotropy.

- Number density:
 $$n(t) = g_{\text{int}} \int \frac{d^3 p}{(2\pi)^3} f(p, t)$$

- Energy density:
 $$\rho(t) = g_{\text{int}} \int \frac{d^3 p}{(2\pi)^3} E f(p, t)$$

- Pressure:
 $$P(t) = g_{\text{int}} \int \frac{d^3 p}{(2\pi)^3} \frac{p^2}{3E} f(p, t)$$

The equation of state:
$$w(t) = \frac{P(t)}{\rho(t)}$$

⇒ The distribution $f(p, t)$ is the central quantity in understanding cosmological properties of the dark sector.
Early Dynamics → DM Momentum Distributions

- It is important to understand how \(f(p) \) evolves in an FRW background:

\[
p(t) = p(t') \frac{a(t')}{a(t)}
\]

Redshifting gives

\[
\frac{d \log p}{dt} = -H(t)
\]

Hubble parameter
Early Dynamics \rightarrow \text{DM Momentum Distributions}

- It is important to understand how $f(p)$ evolves in an FRW background:

$$p(t) = p(t') \frac{a(t')}{a(t)} \quad \text{gives} \quad \frac{d \log p}{dt} = - H(t)$$

\[\text{redshifting} \]

\Rightarrow time-evolution corresponds to overall shifts in $\log p$

$$N(t) \equiv a^3 n \propto a^3 \int d^3 p f(p, t) = 4\pi \int d \log p (pa)^3 f(p)$$

\[\text{comoving number density} \]
Early Dynamics → DM Momentum Distributions

- It is important to understand how \(f(p) \) evolves in an FRW background:

\[
p(t) = p(t') \frac{a(t')}{a(t)} \quad \text{gives} \quad \frac{d \log p}{dt} = -H(t)
\]

\(\text{redshifting} \)

\[\Rightarrow \text{time-evolution corresponds to overall shifts in } \log p \]

\[
N(t) \equiv a^3 n \propto a^3 \int d^3 p f(p, t) = 4\pi \int d \log p (pa)^3 f(p)
\]

\[\text{comoving number density} \]

motivates a definition

\[
g(p, t) \equiv a(t)^3 p^3 f(p, t)
\]

such that \(N \propto \int d \log p g(p) \).
Early Dynamics \(\rightarrow\) DM Momentum Distributions

- It is important to understand how \(f(p)\) evolves in an FRW background:

\[
p(t) = p(t') \frac{a(t')}{a(t)} \quad \text{gives} \quad \frac{d \log p}{dt} = -H(t)
\]

\[\text{redshifting} \]

\[\Rightarrow \text{time-evolution corresponds to overall shifts in } \log p\]

\[
N(t) \equiv a^3 n \propto a^3 \int d^3 p f(p, t) = 4\pi \int d \log p \left(pa\right)^3 f(p)
\]

\[\text{comoving number density}\]

motivates a definition

\[
g(p, t) \equiv a(t)^3 p^3 f(p, t)
\]

such that \(N \propto \int d \log p g(p)\).

Under time-evolution

\[g(p(t), t) = g(p(t'), t'), \text{ i.e., the shape is fixed, but it shifts in } \log p, \text{ as if carried along by a cosmological \textquoteleft\textquoteleft conveyor belt\textquoteright\textquoteleft\textquoteright\textquoteright.}\]

Jeff Kost
Deciphering the Archaeological Record: Cosmological Imprints of Non-Minimal Dark Sectors
Early Dynamics \(\rightarrow\) DM Momentum Distributions

- It is important to understand how \(f(p)\) evolves in an FRW background:

\[
p(t) = p(t') \frac{a(t')}{a(t)} \quad \text{gives} \quad \frac{d \log p}{dt} = -H(t)
\]

- Hubble parameter

\[
\Rightarrow \text{time-evolution corresponds to overall shifts in } \log p
\]

\[
N(t) \equiv a^3 n \propto a^3 \int d^3p f(p, t) = 4\pi \int d \log p (pa)^3 f(p)
\]

- Motivates a definition

\[
g(p, t) \equiv a(t)^3 p^3 f(p, t)
\]

such that \(N \propto \int d \log p g(p)\).

Under time-evolution

\[
g(p(t), t) = g(p(t'), t'), \ i.e., \ the \ shape \ is \ fixed, \ but \ it \ shifts \ in \ \log p, \ as \ if \ carried \ along \ by \ a\ cosmological \ \text{“conveyor belt”}
\]
Early Dynamics \longrightarrow DM Momentum Distributions

- Allowing interactions, non-thermal production could potentially yield interesting scenarios:

\[
\log p
\]

flow of conveyor belt
Early Dynamics → DM Momentum Distributions

- Allowing interactions, non-thermal production could potentially yield interesting scenarios:
Early Dynamics \rightarrow DM Momentum Distributions

- Allowing interactions, non-thermal production could potentially yield interesting scenarios:

![Diagram showing momentum distributions with deposits at different times](image)
Early Dynamics → DM Momentum Distributions

- Allowing interactions, non-thermal production could potentially yield interesting scenarios:

\[
\log p
\]

deposit at \(t_1\)

deposit at \(t_2\)

flow of conveyor belt
Early Dynamics \[\rightarrow\] DM Momentum Distributions

- Allowing interactions, non-thermal production could potentially yield interesting scenarios:

\[\Rightarrow\] after deposits completed, resulting distribution can be highly non-trivial and even *multi-modal.*
Early Dynamics → DM Momentum Distributions

- Allowing interactions, non-thermal production could potentially yield interesting scenarios:

\[
g(p) = \int dt' \Delta \left(p \frac{a(t)}{a(t')}, t' \right)
\]

accumulation of deposits with profile \(\Delta(p, t) \):

\[
g(p) = \int dt' \Delta \left(p \frac{a(t)}{a(t')}, t' \right)
\]

⇒ after deposits completed, resulting distribution can be highly non-trivial and even **multi-modal**.
what properties naturally give rise to such deposits?

If the dark sector contains an ensemble of states with different masses, then these deposits arise naturally from **intra-ensemble decays** (decays within dark sector)
Early Dynamics \rightarrow DM Momentum Distributions

- To consider how this works, take a three-state system with $m_2 > m_1 > m_0$, and only the heaviest initially produced (for simplicity).
Early Dynamics \(\rightarrow\) DM Momentum Distributions

- To consider how this works, take a three-state system with \(m_2 > m_1 > m_0\), and only the heaviest initially produced (for simplicity).

![Diagram showing g(p) and redshift](image-url)
Early Dynamics \rightarrow DM Momentum Distributions

- To consider how this works, take a three-state system with $m_2 > m_1 > m_0$, and only the heaviest initially produced (for simplicity).

BASIC OBSERVATIONS:

$2 \rightarrow 1 + 0$: daughter packets get extra kinetic energy and width (Δp) compared to parent packet.
Early Dynamics \rightarrow DM Momentum Distributions

- To consider how this works, take a three-state system with $m_2 > m_1 > m_0$, and only the heaviest initially produced (for simplicity).

BASIC OBSERVATIONS:

- $2 \rightarrow 1 + 0$: daughter packets get extra kinetic energy and width (Δp) compared to parent packet.
Early Dynamics \rightarrow DM Momentum Distributions

- To consider how this works, take a three-state system with $m_2 > m_1 > m_0$, and only the heaviest initially produced (for simplicity).

BASIC OBSERVATIONS:

- $2 \rightarrow 1 + 0$: daughter packets get extra kinetic energy and width (Δp) compared to parent packet.
- $1 \rightarrow 0 + 0$: produces two identical daughter packets (twice the area), again wider than the parent.
Early Dynamics \rightarrow DM Momentum Distributions

- To consider how this works, take a three-state system with $m_2 > m_1 > m_0$, and only the heaviest initially produced (for simplicity).

BASIC OBSERVATIONS:

1. $2 \rightarrow 1 + 0$: daughter packets get extra kinetic energy and width (Δp) compared to parent packet.

2. $1 \rightarrow 0 + 0$: produces two identical daughter packets (twice the area), again wider than the parent.

resulting distribution $g(p)$ is superposition of deposits from two separate decay chains—carries imprints of the early decay dynamics.
Early Dynamics \rightarrow DM Momentum Distributions

- To consider how this works, take a three-state system with $m_2 > m_1 > m_0$, and only the heaviest initially produced (for simplicity).

BASIC OBSERVATIONS:

1. $2 \rightarrow 1 + 0$: daughter packets get extra kinetic energy and width (Δp) compared to parent packet.
2. $1 \rightarrow 0 + 0$: produces two identical daughter packets (twice the area), again wider than the parent.

resulting distribution $g(p)$ is superposition of deposits from two separate decay chains—carries imprints of the early decay dynamics

but what precisely sets the detailed shape of each packet?
Let us investigate the process of a single decay in detail:

\[g_P(p) \] for parent and \[g_D(p) \] for daughters.
Early Dynamics \(\rightarrow\) DM Momentum Distributions

- Let us investigate the process of a single decay in detail:
Early Dynamics \rightarrow DM Momentum Distributions

- Let us investigate the process of a single decay in detail:

\[P \rightarrow D \]

\[g_P(p) \rightarrow g_D(p) \]

\[\text{PARENT} \rightarrow \text{DAUGHTERS} \]

\[\log p \rightarrow \log p \]

\[\text{redshift} \rightarrow \text{decay at } t_A \rightarrow \text{decay at } t_B \]
Early Dynamics \rightarrow DM Momentum Distributions

- Let us investigate the process of a single decay in detail:
Early Dynamics → DM Momentum Distributions

- Let us investigate the process of a single decay in detail:

$$g_P(p)$$

PARENT

$$g_D(p)$$

DAUGHTERS
Early Dynamics \rightarrow DM Momentum Distributions

- This detailed analysis allows us to **infer** properties of the **parent packet**, simply by examining the **properties of the daughter packet**.
Early Dynamics \rightarrow DM Momentum Distributions

- This detailed analysis allows us to *infer* properties of the **parent packet**, simply by examining the properties of the **daughter packet**.

EXAMPLE:
In our analysis we have found that

- **leftward tilt** (positive skew): relativistic at production
- **rightward tilt** (negative skew): non-relativistic at production
Early Dynamics \(\rightarrow\) DM Momentum Distributions

- This detailed analysis allows us to infer properties of the parent packet, simply by examining the properties of the daughter packet.

EXAMPLE:
In our analysis we have found that

- **Leftward tilt** (positive skew) \(\rightarrow\) relativistic at production
- **Rightward tilt** (negative skew) \(\rightarrow\) non-relativistic at production

We could have a narrow daughter packet \((i.e., \Delta p \ll m \text{ and } \Delta p \ll \langle p \rangle)\) with a parent packet that is either
 - relativistic with a close-to-marginal decay
 - non-relativistic with a far-from-marginal decay

but the tilt/skewness allows us to distinguish.
Early Dynamics \rightarrow DM Momentum Distributions

- We can go even further and map out all of the correlations:

<table>
<thead>
<tr>
<th>Daughter packet</th>
<th>Parent packet</th>
<th>Decay near marginality?</th>
<th>Decay near “relative marginality”?</th>
</tr>
</thead>
<tbody>
<tr>
<td>rel? (max p)</td>
<td>rel at production?</td>
<td>rel</td>
<td>rel~</td>
</tr>
<tr>
<td>tilt</td>
<td>rel at decay?</td>
<td>rel\gg</td>
<td>rel\gg</td>
</tr>
<tr>
<td>width $\Delta p/m$</td>
<td>$\mathcal{O}(1)$</td>
<td>rel</td>
<td>non-rel</td>
</tr>
<tr>
<td>relative width $\Delta p/\langle p \rangle$</td>
<td>narrow</td>
<td>rel\gg</td>
<td>rel\gg</td>
</tr>
<tr>
<td></td>
<td>leftward</td>
<td>wide</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>narrow</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>$p \gg m$</td>
<td>rightward</td>
<td>wide</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>narrow</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>$p \sim m$</td>
<td>leftward</td>
<td>narrow</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>narrow</td>
<td>$\mathcal{O}(1)$</td>
</tr>
<tr>
<td>$p \ll m$</td>
<td>rightward</td>
<td>narrow</td>
<td>$\mathcal{O}(1)$</td>
</tr>
</tbody>
</table>

and even apply these to the **constituent parts** of multi-modal distributions.
To verify that these features appear we need to (numerically) solve the Boltzmann system:

\[
\frac{\partial f_\ell(p_\ell, t)}{\partial t} = H(t)p_\ell \frac{\partial f_\ell}{\partial p_\ell} + \frac{C[f]}{\sqrt{p_\ell^2 + m_\ell^2}}
\]

for the three-state system.
Early Dynamics → DM Momentum Distributions

• To verify that these features appear we need to (numerically) solve the Boltzmann system:

\[
\frac{\partial f_\ell(p_\ell, t)}{\partial t} = H(t)p_\ell \frac{\partial f_\ell}{\partial p_\ell} + \frac{C[f]}{\sqrt{p_\ell^2 + m_\ell^2}} \text{ for the three-state system.}
\]

• Assume that \(f_\ell \ll 1 \) and we have an initially populated thermal distribution \(g_2(p) \)

• Everything else is determined by the decay widths \(\Gamma_{ij}^\ell \) and the Hubble parameter \(H \)
Early Dynamics → DM Momentum Distributions

- To verify that these features appear we need to (numerically) solve the Boltzmann system:

\[
\frac{\partial f_\ell(p_\ell, t)}{\partial t} = \frac{H(t)p_\ell}{\partial p_\ell} \frac{\partial f_\ell}{\partial p_\ell} + \frac{C[f]}{\sqrt{p_\ell^2 + m_\ell^2}} \]

for the three-state system.

- Assume that \(f_\ell \ll 1 \) and we have an initially populated thermal distribution \(g_2(p) \)

- Everything else is determined by the decay widths \(\Gamma_{ij}^{\ell} \) and the Hubble parameter \(H \)
To verify that these features appear we need to (numerically) solve the Boltzmann system:

$$\frac{\partial f_\ell(p_\ell, t)}{\partial t} = H(t)p_\ell \frac{\partial f_\ell}{\partial p_\ell} + \frac{C[f]}{\sqrt{p_\ell^2 + m_\ell^2}}$$

for the three-state system.

Assume that $f_\ell \ll 1$ and we have an initially populated thermal distribution $g_2(p)$.

Everything else is determined by the decay widths Γ_{ij}^ℓ and the Hubble parameter H.

\begin{align*}
m_2 &= 7m_0 \\
m_1 &= 3m_0 \\
\{0, 10, 0.1\} \\
\{0, 10, 10\} \\
\{0, 10, 100\} \\
\{10, 10, 0.1\} \\
\{\Gamma_{00}^2, \Gamma_{11}^2, \Gamma_{00}^1\}/H \\
p/m_0 \\
0 &\quad 0.1 &\quad 1
\end{align*}
To verify that these features appear we need to (numerically) solve the Boltzmann system:

\[
\frac{\partial f_\ell(p_\ell, t)}{\partial t} = H(t)p_\ell \frac{\partial f_\ell}{\partial p_\ell} + \frac{C[f]}{\sqrt{p_\ell^2 + m_\ell^2}}
\]

for the three-state system.

Assume that \(f_\ell \ll 1 \) and we have an initially populated thermal distribution \(g_2(p) \).

Everything else is determined by the decay widths \(\Gamma_{ij} \) and the Hubble parameter \(H \).
Early Dynamics \rightarrow DM Momentum Distributions

- To verify that these features appear we need to (numerically) solve the Boltzmann system:

$$\frac{\partial f_\ell(p_\ell, t)}{\partial t} = H(t)p_\ell \frac{\partial f_\ell}{\partial p_\ell} + \frac{C[f]}{\sqrt{p_\ell^2 + m_\ell^2}}$$

for the three-state system.

- Assume that $f_\ell \ll 1$ and we have an initially populated thermal distribution $g_2(p)$

- Everything else is determined by the decay widths Γ_{ij} and the Hubble parameter H
I Early Dynamics → DM Momentum Distributions

- To verify that these features appear we need to (numerically) solve the Boltzmann system:

\[
\frac{\partial f_\ell(p_\ell, t)}{\partial t} = H(t)p_\ell \frac{\partial f_\ell}{\partial p_\ell} + \frac{C[f]}{\sqrt{p_\ell^2 + m_\ell^2}}
\]

redshifting

collision terms

for the three-state system.

- Assume that \(f_\ell \ll 1 \) and we have an initially populated thermal distribution \(g_2(p) \)

- Everything else is determined by the decay widths \(\Gamma^{\ell}_{ij} \) and the Hubble parameter \(H \)
To verify that these features appear we need to (numerically) solve the Boltzmann system:

\[
\frac{\partial f_\ell(p_\ell, t)}{\partial t} = H(t)p_\ell \frac{\partial f_\ell}{\partial p_\ell} + \frac{C[f]}{\sqrt{p_\ell^2 + m_\ell^2}}
\]

for the three-state system.

Assume that \(f_\ell \ll 1\) and we have an initially populated thermal distribution \(g_2(p)\).

Everything else is determined by the decay widths \(\Gamma_{ij}\) and the Hubble parameter \(H\).
Early Dynamics \(\longrightarrow\) DM Momentum Distributions

- To verify that these features appear we need to (numerically) solve the Boltzmann system:

\[
\frac{\partial f_\ell(p_\ell, t)}{\partial t} = H(t)p_\ell \frac{\partial f_\ell}{\partial p_\ell} + \frac{C[f]}{\sqrt{p_\ell^2 + m_\ell^2}} \text{ redshifting collision terms}
\]

for the three-state system.

- Assume that \(f_\ell \ll 1\) and we have an initially populated thermal distribution \(g_2(p)\)

- Everything else is determined by the decay widths \(\Gamma_{ij}\) and the Hubble parameter \(H\)

In the only case with competing decay chains we find multi-modal distributions are produced.
PART II
DM phase-space distribution \rightarrow matter power spectrum
INITIAL CONDITIONS
(primordial perturbations)
INITIAL CONDITIONS
(primordial perturbations)

POWER SPECTRA

\[T^2(k) \equiv \frac{P(k)}{P_{CDM}(k)} \]
INITIAL CONDITIONS (primordial perturbations)

$g(p)$

evolve perturbations (using CLASS software)

POWER SPECTRA

$T^2(k) \equiv \frac{P(k)}{P_{CDM}(k)}$
Momentum Distributions → Matter Power Spectra
(Cold) dark matter drives the growth of structure
(Cold) dark matter drives the growth of structure

\[\ddot{\delta} + 2H \dot{\delta} + \frac{k^2}{a^2} c_s^2 \delta - \frac{4\pi G \rho \delta}{a^2} = 0 \]

DM density perturbations

\[\delta \equiv \frac{\delta \rho_{DM}}{\rho_{DM}} \]
• (Cold) **dark matter** drives the growth of **structure**

\[
\ddot{\delta} + 2H \dot{\delta} + \frac{k^2}{a^2} c_s^2 \delta - 4\pi G \rho \delta = 0
\]

\[
\delta \equiv \frac{\delta \rho_{DM}}{\rho_{DM}}
\]

and with \(c_s^2 \neq 0\) small perturbations \(\frac{k}{a} > \sqrt{\frac{3}{2}} \frac{H}{c_s}\) do not grow
(Cold) dark matter drives the growth of structure

\[\ddot{\delta} + 2H \dot{\delta} + \frac{k^2}{a^2} c_s^2 \delta - 4\pi G \rho \delta = 0 \]

DM density perturbations \(\delta \equiv \frac{\delta \rho_{DM}}{\rho_{DM}} \)

and with \(c_s^2 \neq 0 \) small perturbations \(\frac{k}{a} > \sqrt{\frac{3}{2}} \frac{H}{c_s} \) do not grow

A standard approach is to define a free-streaming horizon

\[k_{FSH}^{-1} \equiv \int_{t_{prod}}^{t_{now}} dt \frac{\langle v(t) \rangle}{a(t)} \]

as a benchmark for the scale below which structure is suppressed.
(Cold) **dark matter** drives the growth of **structure**

\[
\ddot{\delta} + 2H \dot{\delta} + \frac{k^2}{a^2} c_s^2 \delta - 4\pi G \rho \delta = 0
\]

DM density perturbations

\[\delta \equiv \frac{\delta \rho_{DM}}{\rho_{DM}}\]

and with \(c_s^2 \neq 0\) small perturbations \(\frac{k}{a} > \sqrt{\frac{3}{2}} \frac{H}{c_s}\) do not grow

A standard approach is to define a **free-streaming horizon**

\[k_{FSH}^{-1} \equiv \int_{t_{prod}}^{t_{now}} \frac{d\langle v(t) \rangle}{a(t)}\]

relies on **averaging** over DM distribution

will **fail** for multi-modal \(g(p)\)

as a benchmark for the scale below which structure is suppressed.
(Cold) dark matter drives the growth of structure

\[\ddot{\delta} + 2H \dot{\delta} + \frac{k^2}{a^2} c_s^2 \delta - 4\pi G \rho \delta = 0 \]

DM density perturbations

\[\delta \equiv \frac{\delta \rho_{DM}}{\rho_{DM}} \]

and with \(c_s^2 \neq 0 \) small perturbations \(\frac{k}{a} > \sqrt{\frac{3}{2} \frac{H}{c_s}} \) do not grow

A standard approach is to define a free-streaming horizon

\[k_{FSH}^{-1} \equiv \int_{t_{prod}}^{t_{now}} \frac{\langle v(t) \rangle}{a(t)} dt \]

relies on averaging over DM distribution

will fail for multi-modal \(g(p) \)

as a benchmark for the scale below which structure is suppressed.

We’ll consider a different approach...
Momentum Distributions \rightarrow Matter Power Spectra

Our Approach:
Our Approach:

- We begin by considering *momentum slices* through the distribution:

\[
k_{FSH}(p) \equiv \left[\int_{t_{prod}}^{t_{now}} \frac{p/a(t)}{\sqrt{p^2/a(t)^2 + m^2 a(t)}} \frac{dt}{a(t)} \right]^{-1}
\]
II Momentum Distributions \(\rightarrow\) Matter Power Spectra

Our Approach:

• We begin by considering *momentum slices* through the distribution:

\[
k_{FSH}(p) \equiv \left[\int_{t_{prod}}^{t_{now}} \frac{p/a(t)}{\sqrt{p^2/a(t)^2 + m^2 a(t)}} dt \right]^{-1}
\]

• We take this \(k_{FSH}(p)\) relation to define a *mapping* between \(p\) [of the dark-matter distribution \(g(p)\)] and \(k\) [of the power spectrum \(P(k)\)].
Our Approach:

• We begin by considering *momentum slices* through the distribution:

\[
k_{\text{FSH}}(p) \equiv \left[\int_{t_{\text{prod}}}^{t_{\text{now}}} \frac{p/a(t)}{\sqrt{p^2/a(t)^2 + m^2}} \frac{dt}{a(t)} \right]^{-1}
\]

• We take this \(k_{\text{FSH}}(p) \) relation to define a *mapping* between \(p \) [of the dark-matter distribution \(g(p) \)] and \(k \) [of the power spectrum \(P(k) \)].

• In other words, we identify \(k_{\text{FSH}}(p) \) with \(k \) and consider \(g(p) \) as having a corresponding profile in \(k \)-space:

\[
\tilde{g}(k) \equiv g(k_{\text{FSH}}^{-1}(k)) |\mathcal{J}(k)|
\]
Our Approach:

- We begin by considering \textit{momentum slices} through the distribution:

\[
k_{\text{FSH}}(p) \equiv \left[\int_{t_{\text{prod}}}^{t_{\text{now}}} \frac{p/a(t)}{\sqrt{p^2/a(t)^2 + m^2 a(t)}} \frac{dt}{a(t)} \right]^{-1}
\]

- We take this \(k_{\text{FSH}}(p)\) relation to define a \textit{mapping} between \(p\) [of the dark-matter distribution \(g(p)\)] and \(k\) [of the power spectrum \(P(k)\)].

- In other words, we identify \(k_{\text{FSH}}(p)\) with \(k\) and consider \(g(p)\) as having a corresponding profile in \(k\)-space:

\[
\tilde{g}(k) \equiv g\left(k_{\text{FSH}}^{-1}(k)\right) |\mathcal{J}(k)|
\]

\textit{inverse function of free-streaming horizon}
II. Momentum Distributions \rightarrow Matter Power Spectra

Our Approach:

- We begin by considering *momentum slices* through the distribution:

$$k_{FSH}(p) \equiv \left[\int_{t_{prod}}^{t_{now}} \frac{p/a(t)}{\sqrt{p^2/a(t)^2 + m^2 a(t)}} \frac{dt}{a(t)} \right]^{-1}$$

- We take this $k_{FSH}(p)$ relation to define a *mapping* between p [of the dark-matter distribution $g(p)$] and k [of the power spectrum $P(k)$].

- In other words, we identify $k_{FSH}(p)$ with k and consider $g(p)$ as having a corresponding profile in k-space:

$$\tilde{g}(k) \equiv g\left(k_{FSH}^{-1}(k)\right) |J(k)|$$

which retains $\mathcal{N} = \int d\log p \ g(p) = \int d\log k \ \tilde{g}(k)$.

• Inverse function of free-streaming horizon

• Jacobian
Momentum Distributions → Matter Power Spectra
we are finally equipped to ask:

Can we conjecture the relationship

$$\tilde{g}(k) \leftrightarrow T^2(k)$$

between distributions/power spectra?
we are finally equipped to ask:

Can we conjecture the *relationship*

\[\tilde{g}(k) \leftrightarrow T^2(k) \]

between distributions/power spectra?

let’s do a bit of exploring...
• For simplicity, consider a simple uni-modal dark-matter phase space distribution $g(p)$.

• We vary the fraction of dark matter abundance $r \equiv \Omega / \Omega_{DM}$ carried by $g(p)$ and assume that the rest is pure CDM.
II Momentum Distributions → Matter Power Spectra

- For simplicity, consider a simple uni-modal dark-matter phase space distribution $g(p)$.
- We vary the fraction of dark matter abundance $r \equiv \Omega / \Omega_{DM}$ carried by $g(p)$ and assume that the rest is pure CDM.
II Momentum Distributions → Matter Power Spectra

- For simplicity, consider a simple uni-modal dark-matter phase space distribution $g(p)$.

- We vary the fraction of dark matter abundance $r \equiv \Omega / \Omega_{DM}$ carried by $g(p)$ and assume that the rest is pure CDM.

BASIC OBSERVATIONS:
II Momentum Distributions \rightarrow \textbf{Matter Power Spectra}

- For simplicity, consider a simple uni-modal dark-matter phase space distribution $g(p)$.
- We vary the fraction of dark matter abundance $r \equiv \Omega/\Omega_{\text{DM}}$ carried by $g(p)$ and assume that the rest is pure CDM.

BASIC OBSERVATIONS:

- no power suppression until we approach where $\tilde{g}(k)$ is concentrated
Momentum Distributions ➔ Matter Power Spectra

- For simplicity, consider a simple uni-modal dark-matter phase space distribution \(g(p) \).

- We vary the fraction of dark matter abundance \(r \equiv \Omega / \Omega_{DM} \) carried by \(g(p) \) and assume that the rest is pure CDM.

BASIC OBSERVATIONS:

- no power suppression until we approach where \(\tilde{g}(k) \) is concentrated

- more \(\tilde{g}(k) \) abundance (larger \(r \))
 \(\Rightarrow \) more suppression/steeper slope

\[T^2(k) = \frac{g(k, t_{\text{now}})}{N} \]

\[g(p, t_{\text{now}}) / N \]

\[g(p) \]

\(\sigma = 0.4 \)

\(r = 1.0 \)

\(r = 0.9 \)

\(r = 0.75 \)

\(r = 0.6 \)

\(r = 0.45 \)

\(r = 0.3 \)

\(r = 0.15 \)
For simplicity, consider a simple uni-modal dark-matter phase space distribution $g(p)$.

We vary the fraction of dark matter abundance $r \equiv \Omega / \Omega_{\text{DM}}$ carried by $g(p)$ and assume that the rest is pure CDM.

BASIC OBSERVATIONS:

- no power suppression until we approach where $\tilde{g}(k)$ is concentrated

- more $\tilde{g}(k)$ abundance (larger r)

 \Rightarrow more suppression/steeper slope

- acoustic oscillations begin to show as $\tilde{g}(k)$ carries close to full DM abundance

\[T^2(k) \equiv \frac{P(k)}{P_{\text{CDM}}(k)} \]
II Momentum Distributions \(\rightarrow\) Matter Power Spectra

- Now fix the \(g(p)\) abundance (and its \(\langle p \rangle_{\text{now}}\)) but vary the width of the distribution.
Now fix the $g(p)$ abundance (and its $\langle p \rangle_{\text{now}}$) but vary the width of the distribution.

\[
\Omega = \frac{3}{4} \Omega_{\text{DM}} \\
\langle p \rangle_{\text{now}} = 10^{-6} m
\]

\[
\tilde{g}(k, t_{\text{now}})/N
\]

\[
T^2(k) = \frac{P(k)}{P_{\text{CDM}}(k)}
\]

\[
\Omega = \frac{3}{4} \Omega_{\text{DM}} \\
\langle p \rangle_{\text{now}} = 10^{-6} m
\]
• Now fix the $g(p)$ abundance (and its $\langle p \rangle_{\text{now}}$) but **vary the width** of the distribution.

BASIC OBSERVATIONS:
• Now fix the $g(p)$ abundance (and its $\langle p \rangle_{\text{now}}$) but **vary the width** of the distribution.

BASIC OBSERVATIONS:

• as we **widen** the distribution:
 ○ slope of $T^2(k)$ changes **more slowly**
Now fix the $g(p)$ abundance (and its $\langle p \rangle_{\text{now}}$) but vary the width of the distribution.

BASIC OBSERVATIONS:

- as we widen the distribution:
 - slope of $T^2(k)$ changes more slowly
 - the power suppression becomes smaller
Now fix the $g(p)$ abundance (and its $\langle p \rangle_{\text{now}}$) but vary the width of the distribution.

BASIC OBSERVATIONS:

- as we widen the distribution:
 - slope of $T^2(k)$ changes more slowly
 - the power suppression becomes smaller
 - HOWEVER, the slope of $T^2(k)$ itself remains the same at large k
II Momentum Distributions → Matter Power Spectra

- Now fix the $g(p)$ abundance (and its $\langle p \rangle_{\text{now}}$) but **vary the width** of the distribution.

BASIC OBSERVATIONS:
- as we **widen** the distribution:
 - slope of $T^2(k)$ changes more slowly
 - the power suppression becomes smaller
 - HOWEVER, the slope of $T^2(k)$ itself **remains the same** at large k
- suggests **relationship** between “accumulated abundance” in $\tilde{g}(k)$ and slope of $T^2(k)$
 [{i.e., sweeping to larger k, more accumulated abundance ⇒ slope increasingly steep}]
Now fix the $g(p)$ abundance (and its $\langle p \rangle_{\text{now}}$) but **vary the width** of the distribution.

BASIC OBSERVATIONS:
- as we **widen** the distribution:
 - slope of $T^2(k)$ changes more slowly
 - the power suppression becomes smaller
 - HOWEVER, the slope of $T^2(k)$ itself **remains the same** at large k
- suggests **relationship** between “accumulated abundance” in $\tilde{g}(k)$ and slope of $T^2(k)$
 [i.e., sweeping to larger k, more accumulated abundance \Rightarrow slope increasingly steep]

$\tilde{g}(k)$ abundance correlates **not** with suppression of $T^2(k)$ but with its **slope**.
• Do these observations survive for a more complicated $g(p)$ distribution?

• Let’s examine two peaks and vary their relative abundances.
Momentum Distributions \(\rightarrow \) Matter Power Spectra

- Do these observations survive for a more complicated \(g(p) \) distribution?
- Let’s examine two peaks and vary their relative abundances.
Momentum Distributions \rightarrow Matter Power Spectra

- Do these observations survive for a more complicated $g(p)$ distribution?
- Let's examine two peaks and vary their relative abundances.

BASIC OBSERVATIONS:
II Momentum Distributions → Matter Power Spectra

- Do these observations survive for a more complicated $g(p)$ distribution?

- Let’s examine two peaks and vary their relative abundances.

BASIC OBSERVATIONS:

- sweeping from smaller to larger k:
 - within peaks:
 - abundance accumulated \Rightarrow slope increases

\[T^2(k) \equiv \frac{P(k)}{P_{CDM}(k)} \]

\[\tilde{g}(k, t_{\text{now}})/N \]

\[g(p, t_{\text{now}})/N \]

\[g(p, t_{\text{now}})/N \]
Do these observations survive for a more complicated $g(p)$ distribution?

Let’s examine two peaks and vary their relative abundances.

BASIC OBSERVATIONS:

- sweeping from smaller to larger k:
 - within peaks:
 - abundance accumulated \Rightarrow slope increases
 - between peaks:
 - no abundance accumulated \Rightarrow slope constant
Momentum Distributions \rightarrow Matter Power Spectra

- Do these observations survive for a more complicated $g(p)$ distribution?
- Let’s examine two peaks and vary their relative abundances.

BASIC OBSERVATIONS:
- sweeping from smaller to larger k:
 - **within** peaks:
 - abundance accumulated \Rightarrow slope increases
 - **between** peaks:
 - no abundance accumulated \Rightarrow slope constant so that our observations remain valid.
Momentum Distributions → Matter Power Spectra

- Do these observations survive for a more complicated $g(p)$ distribution?
- Let’s examine two peaks and vary their relative abundances.

BASIC OBSERVATIONS:
- sweeping from smaller to larger k:
 - **within** peaks:
 - abundance accumulated \Rightarrow slope increases
 - **between** peaks:
 - no abundance accumulated \Rightarrow slope constant
 - so that our observations remain valid.

Next, let’s quantify these observations....
PART III
The “Archaeological” Inverse Problem
III The “Archaeological” Inverse Problem

- At any particular k: the accumulated abundance is

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{+\infty} \tilde{g}(k') d\log k'},$$

or equivalently the fraction of our DM which is effectively “hot” (i.e., free-streaming).
The “Archaeological” Inverse Problem

- At any particular k: the accumulated abundance is

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d \log k'}{\int_{-\infty}^{+\infty} \tilde{g}(k') d \log k'},$$

“hot fraction” function

or equivalently the fraction of our DM which is effectively “hot” (i.e., free-streaming).
III The “Archaeological” Inverse Problem

- At any particular k, the accumulated abundance is

\[F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k')d\log k'}{\int_{-\infty}^{+\infty} \tilde{g}(k')d\log k'} , \]

or equivalently the fraction of our DM which is effectively “hot” (i.e., free-streaming).

- Our claim is that the slope of $T^2(k)$ is directly related to $F(k)$

\[F(k) \approx \eta \left(\left| \frac{d\log T^2}{d\log k} \right| \right) \]

some as-yet unknown function
III The “Archaeological” Inverse Problem

• At any particular k: the accumulated abundance is

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{+\infty} \tilde{g}(k') d\log k'},$$

or equivalently the fraction of our DM which is effectively “hot” (i.e., free-streaming).

• Our claim is that the slope of $T^2(k)$ is directly related to $F(k)$

$$F(k) \approx \eta \left(\left| \frac{d \log T^2}{d \log k} \right| \right)$$

so that (differentiating) we find

$$\frac{\tilde{g}(k)}{\mathcal{N}} \approx \eta' \left(\left| \frac{d \log T^2}{d \log k} \right| \right) \frac{d^2 \log T^2}{(d \log k)^2}$$
The “Archaeological” Inverse Problem

- At any particular k: the accumulated abundance is

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d \log k'}{\int_{-\infty}^{+\infty} \tilde{g}(k') d \log k'}$$

or equivalently the fraction of our DM which is effectively “hot” (i.e., free-streaming).

- Our claim is that the slope of $T^2(k)$ is directly related to $F(k)$

$$F(k) \approx \eta \left(\left| \frac{d \log T^2}{d \log k} \right| \right)$$

so that (differentiating) we find

$$\frac{\tilde{g}(k)}{N} \approx \eta' \left(\left| \frac{d \log T^2}{d \log k} \right| \right) \left| \frac{d^2 \log T^2}{(d \log k)^2} \right|$$

phase-space distribution
At any particular k: the accumulated abundance is

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k')d\log k'}{\int_{-\infty}^{+\infty} \tilde{g}(k')d\log k'},$$

“hot fraction” function

or equivalently the fraction of our DM which is effectively “hot” (i.e., free-streaming).

Our claim is that the slope of $T^2(k)$ is directly related to $F(k)$

$$F(k) \approx \eta \left(\left| \frac{d\log T^2}{d\log k} \right| \right)$$

some as-yet unknown function

so that (differentiating) we find

$$\frac{\tilde{g}(k)}{\mathcal{N}} \approx \eta' \left(\left| \frac{d\log T^2}{d\log k} \right| \right) \left| \frac{d^2 \log T^2}{(d\log k)^2} \right|$$

phase-space distribution

transfer function slope
The “Archaeological” Inverse Problem

- At any particular k, the accumulated abundance is

$$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k')d\log k'}{\int_{-\infty}^{+\infty} \tilde{g}(k')d\log k'},$$

"hot fraction" function

or equivalently the fraction of our DM which is effectively “hot” (i.e., free-streaming).

- Our claim is that the slope of $T^2(k)$ is directly related to $F(k)$

$$F(k) \approx \eta \left(\left| \frac{d\log T^2}{d\log k} \right| \right)$$

so that (differentiating) we find

$$\frac{\tilde{g}(k)}{N} \approx \eta' \left(\left| \frac{d\log T^2}{d\log k} \right| \right) \left| \frac{d^2 \log T^2}{(d\log k)^2} \right|$$

phase-space distribution transfer function slope transfer function curvature
III The “Archaeological” Inverse Problem

- Using our earlier results we can implicitly determine the function η:

$$\left| \frac{d \log T^2}{d \log k} \right| \approx F^2(k) + \frac{3}{2} F(k)$$
III The “Archaeological” Inverse Problem

- Using our earlier results we can implicitly determine the function η:

$$\left| \frac{d \log T^2}{d \log k} \right| \approx F^2(k) + \frac{3}{2} F(k)$$

and therefore we can finally state our conjectured relation:

$$\tilde{g}(k) \approx \frac{1}{2} \left(\frac{9}{16} + \left| \frac{d \log T^2}{d \log k} \right| \right)^{-1/2} \left| \frac{d^2 \log T^2}{(d \log k)^2} \right|$$

With this relation we can “resurrect” the DM distribution $\tilde{g}(k)$ from the transfer function $T^2(k)$.
The “Archaeological” Inverse Problem

- Using our earlier results we can implicitly determine the function η:

$$\left| \frac{d \log T^2}{d \log k} \right| \approx F^2(k) + \frac{3}{2} F(k)$$

and therefore we can finally state our conjectured relation:

$$\frac{\tilde{g}(k)}{N} \approx \frac{1}{2} \left(\frac{9}{16} + \left| \frac{d \log T^2}{d \log k} \right| \right)^{-1/2} \left| \frac{d^2 \log T^2}{(d \log k)^2} \right|$$

With this relation we can “resurrect” the DM distribution $\tilde{g}(k)$ from the transfer function $T^2(k)$.

A technical aside:

Our conjecture has a built-in assumption that $d^2 \log T^2(k)/(d \log k)^2$ is negative-semidefinite. This tends to cover cases in which $\tilde{g}(k)$ is relatively “clustered,” regardless of the complexity of its shape.
An Illustrative Model of Multi-Component Decay Chains
Consider a model with $N + 1$ real scalars $\{\phi_0, \phi_1, \ldots \phi_N\}$ with a mass spectrum

$$m_\ell = m_0 + \ell^\delta \Delta m$$

and Lagrangian

$$\mathcal{L} = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_\mu \phi_\ell \partial^\mu \phi_\ell - \frac{1}{2} m_\ell^2 \phi_\ell^2 - \sum_{i=0}^{\ell} \sum_{j=0}^{i} c_{\ell i j} \phi_\ell \phi_i \phi_j \right) + \cdots$$
Illustrative Model of Multi-Component Decay Chains

• Consider a model with $N + 1$ real scalars $\{\phi_0, \phi_1, \ldots \phi_N\}$ with a mass spectrum

$$m_\ell = m_0 + \ell^\delta \Delta m$$

and Lagrangian

$$\mathcal{L} = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_\mu \phi_\ell \partial^\mu \phi_\ell - \frac{1}{2} m_\ell^2 \phi_\ell^2 - \sum_{i=0}^{\ell} \sum_{j=0}^{i} c_{\ell ij} \phi_\ell \phi_i \phi_j \right) + \cdots$$

• Let’s parameterize the trilinear couplings in a useful way for our study:

$$c_{\ell ij} = \mu R_{\ell ij} \left(\frac{m_\ell - m_i - m_j}{\Delta m} \right)^r \left(1 + \frac{|m_i - m_j|}{\Delta m} \right)^{-s} \Theta(m_\ell - m_i - m_j)$$
Consider a model with $N+1$ real scalars $\{\phi_0, \phi_1, \ldots \phi_N\}$ with a mass spectrum

$$m_\ell = m_0 + \ell^\delta \Delta m$$

and Lagrangian

$$\mathcal{L} = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_\mu \phi_\ell \partial^\mu \phi_\ell - \frac{1}{2} m_\ell^2 \phi_\ell^2 - \sum_{i=0}^{\ell} \sum_{j=0}^{i} c_{\ell ij} \phi_\ell \phi_i \phi_j \right) + \cdots$$

Let’s parameterize the trilinear couplings in a useful way for our study:

$$c_{\ell ij} = \mu R_{\ell ij} \left(\frac{m_\ell - m_i - m_j}{\Delta m} \right)^r \left(1 + \frac{|m_i - m_j|}{\Delta m} \right)^{-s} \Theta(m_\ell - m_i - m_j)$$
Illustrative Model of Multi-Component Decay Chains

- Consider a model with $N + 1$ real scalars $\{\phi_0, \phi_1, \ldots \phi_N\}$ with a mass spectrum

\[m_\ell = m_0 + \ell \delta \Delta m \]

and Lagrangian

\[\mathcal{L} = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_{\mu} \phi_\ell \partial^{\mu} \phi_\ell - \frac{1}{2} m_\ell^2 \phi_\ell^2 - \sum_{i=0}^{\ell} \sum_{j=0}^{i} c_{\ell ij} \phi_\ell \phi_i \phi_j \right) + \cdots \]

- Let’s parameterize the trilinear couplings in a useful way for our study:

\[c_{\ell ij} = \mu_{R_{\ell ij}} \left(\frac{m_\ell - m_i - m_j}{\Delta m} \right)^r \left(1 + \frac{|m_i - m_j|}{\Delta m} \right)^{-s} \Theta(m_\ell - m_i - m_j) \]
Illustrative Model of Multi-Component Decay Chains

- Consider a model with $N + 1$ real scalars $\{\phi_0, \phi_1, \ldots \phi_N\}$ with a mass spectrum

$$m_\ell = m_0 + \ell \delta \Delta m$$

and Lagrangian

$$L = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_\mu \phi_\ell \partial^\mu \phi_\ell - \frac{1}{2} m_\ell^2 \phi_\ell^2 - \sum_{i=0}^{\ell} \sum_{j=0}^{i} c_{\ell ij} \phi_\ell \phi_i \phi_j \right) + \cdots$$

- Let’s parameterize the trilinear couplings in a useful way for our study:

$$c_{\ell ij} = \mu R_{\ell ij} \left(\frac{m_\ell - m_i - m_j}{\Delta m} \right)^r \left(1 + \frac{|m_i - m_j|}{\Delta m} \right)^{-s} \Theta(m_\ell - m_i - m_j)$$

where μ is the overall mass scale, $R_{\ell ij}$ is the counting factor gap between parents and daughters, and Θ is the step function.
Illustrative Model of Multi-Component Decay Chains

- Consider a model with \(N + 1 \) real scalars \(\{\phi_0, \phi_1, \ldots \phi_N\} \) with a mass spectrum

\[
m_\ell = m_0 + \ell^\delta \Delta m
\]

and Lagrangian

\[
\mathcal{L} = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_\mu \phi_\ell \partial^\mu \phi_\ell - \frac{1}{2} m_\ell^2 \phi_\ell^2 - \sum_{i=0}^{\ell} \sum_{j=0}^{i} c_{\ell ij} \phi_\ell \phi_i \phi_j \right) + \cdots
\]

- Let’s parameterize the trilinear couplings in a useful way for our study:

\[
c_{\ell ij} = \mu R_{\ell ij} \left(\frac{m_\ell - m_i - m_j}{\Delta m} \right)^r \left(1 + \frac{|m_i - m_j|}{\Delta m} \right)^{-s} \Theta(m_\ell - m_i - m_j)
\]
Illustrative Model of Multi-Component Decay Chains

- Consider a model with $N + 1$ real scalars $\{\phi_0, \phi_1, \ldots \phi_N\}$ with a mass spectrum

$$m_\ell = m_0 + \ell \delta \Delta m$$

and Lagrangian

$$\mathcal{L} = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_\mu \phi_\ell \partial^\mu \phi_\ell - \frac{1}{2} m_\ell^2 \phi_\ell^2 - \sum_{i=0}^{\ell} \sum_{j=0}^{i} c_{\ell ij} \phi_\ell \phi_i \phi_j \right) + \cdots$$

- Let’s parameterize the trilinear couplings in a useful way for our study:

$$c_{\ell ij} = \mu R_{\ell ij} \left(\frac{m_\ell - m_i - m_j}{\Delta m} \right)^r \left(1 + \frac{|m_i - m_j|}{\Delta m} \right)^{-s} \Theta(m_\ell - m_i - m_j)$$

energy released

- $r > 0$: maximally exothermic decays
- $r < 0$: minimally exothermic decays
Illustrative Model of Multi-Component Decay Chains

Consider a model with \(N + 1 \) real scalars \(\{\phi_0, \phi_1, \ldots, \phi_N\} \) with a mass spectrum

\[
m_\ell = m_0 + \ell \delta \Delta m
\]

and Lagrangian

\[
\mathcal{L} = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_\mu \phi_\ell \partial^\mu \phi_\ell - \frac{1}{2} m_\ell^2 \phi_\ell^2 - \sum_{i=0}^{\ell} \sum_{j=0}^{\ell} c_{\ell ij} \phi_\ell \phi_i \phi_j \right) + \cdots
\]

Let’s parameterize the trilinear couplings in a useful way for our study:

\[
c_{\ell ij} = \mu R_{\ell ij} \left(\frac{m_\ell - m_i - m_j}{\Delta m} \right) \left(1 + \frac{|m_i - m_j|}{\Delta m}\right) \Theta(m_\ell - m_i - m_j)
\]

- \(r > 0 \): maximally exothermic decays
- \(r < 0 \): minimally exothermic decays
- \(s > 0 \): maximally symmetric daughters
- \(s < 0 \): minimally symmetric daughters
Illustrative Model of Multi-Component Decay Chains

- Consider a model with \(N + 1 \) real scalars \(\{\phi_0, \phi_1, \ldots \phi_N\} \) with a mass spectrum

\[
m_\ell = m_0 + \ell^\delta \Delta m
\]

and Lagrangian

\[
\mathcal{L} = \sum_{\ell=0}^{N} \left(\frac{1}{2} \partial_\mu \phi_\ell \partial^\mu \phi_\ell - \frac{1}{2} m_\ell^2 \phi_\ell^2 - \sum_{i=0}^{\ell} \sum_{j=0}^{i} c_{\ell ij} \phi_\ell \phi_i \phi_j \right) + \cdots
\]

- Let’s parameterize the trilinear couplings in a useful way for our study:

\[
c_{\ell ij} = \mu R_{\ell ij} \left(\frac{m_\ell - m_i - m_j}{\Delta m} \right)^r \left(1 + \left| \frac{m_i - m_j}{\Delta m} \right|^s \right) \Theta(m_\ell - m_i - m_j)
\]

Fix parameters:
- \(N = 9 \)
- \(\delta = 1 \)
- \(\Delta m = 2m_0 \)
- \(\mu = 0.1m_0 \)

Energy released
- \(r > 0 \): maximally exothermic decays
- \(r < 0 \): minimally exothermic decays

Symmetry in decay
- \(s > 0 \): maximally symmetric daughters
- \(s < 0 \): minimally symmetric daughters
Illustrative Model of Multi-Component Decay Chains

partial widths for \(\phi_9 \rightarrow \phi_i \phi_j \ (i \geq j) \)

\[
\begin{align*}
\Gamma_{ij}^9(r, s)/\Gamma_{00}^9(0, 0) = & \\
\Gamma_{0j}^9(r, s) &= \frac{\Gamma_{ij}^9(r, s)}{\Gamma_{0j}^9(0, 0)}
\end{align*}
\]
Illustrative Model of Multi-Component Decay Chains

tend to minimize kinetic energy and favor asymmetry

partial widths for $\phi_9 \rightarrow \phi_i \phi_j \ (i \geq j)$

$tend to produce light states and favor asymmetry$

$tend to minimize kinetic energy and favor symmetry$

tend to produce lightest states
Illustrative Model of Multi-Component Decay Chains

s increasing

r increasing

$r = -3, s = -4$

$r = -3, s = 0$

$r = -3, s = +4$

$r = 0, s = -4$

$r = 0, s = 0$

$r = 0, s = +4$

$r = +3, s = -4$

$r = +3, s = 0$

$r = +3, s = +4$

Γ_i/Γ_0

n_h

10^{-12} 10^{-9} 10^{-6} 10^{-3} 1 10^3 10^6

Deciphering the Archaeological Record: Cosmological Imprints of Non-Minimal Dark Sectors
Illustrative Model of Multi-Component Decay Chains

s increasing

Decays to lightest state occur over similar times
Illustrative Model of Multi-Component Decay Chains

s increasing

r increasing

$r = -3$
$s = -4$

$r = -3$
$s = 0$

$r = -3$
$s = +4$

$r = 0$
$s = -4$

$r = 0$
$s = 0$

$r = 0$
$s = +4$

$r = +3$
$s = -4$

$r = +3$
$s = 0$

$r = +3$
$s = +4$

t/t_I

10^{-3}
10^{-2}
10^{-1}

10^{-1}
10^{-2}
10^{-3}
10^{-4}

0.1

1

$a^3\rho/\left[a^3(t_I)\rho_{tot}(t_I)\right]$

10^{-3}
10^{-2}
10^{-1}

1

10^3
10^6
10^9
10^{12}

10^3
10^6
10^9
10^{12}

10^3
10^6
10^9
10^{12}

10^3
10^6
10^9
10^{12}

Jeff Kost

Deciphering the Archaeological Record: Cosmological Imprints of Non-Minimal Dark Sectors
Illustrative Model of Multi-Component Decay Chains

Decays to lightest state occur over similar times.
Illustrative Model of Multi-Component Decay Chains

s increasing

r increasing

w increasing

t/t_I increasing

$r = -3$
$s = -4$

$r = -3$
$s = 0$

$r = -3$
$s = +4$

$r = 0$
$s = -4$

$r = 0$
$s = 0$

$r = 0$
$s = +4$

$r = +3$
$s = -4$

$r = +3$
$s = 0$

$r = +3$
$s = +4$
Illustrative Model of Multi-Component Decay Chains

s increasing

r increasing

s increasing

p/m increasing

$g(p, t_{\text{now}})/N = r - 3$
$s = -4$

$g(p, t_{\text{now}})/N = r - 3$
$s = 0$

$g(p, t_{\text{now}})/N = r - 3$
$s = +4$

$g(p, t_{\text{now}})/N = +3$
$s = -4$

$g(p, t_{\text{now}})/N = +3$
$s = 0$

$g(p, t_{\text{now}})/N = +3$
$s = +4$
Illustrative Model of Multi-Component Decay Chains

A variety of distribution functions emerge!
Illustrative Model of Multi-Component Decay Chains

s increasing

r increasing

$T^2(k) \equiv P(k)/P_{CDM}(k)$

$\tilde{g}(k, t_{now})/N$

s increasing
Recall our conjecture:
\[
\frac{\tilde{g}(k)}{N} \approx \frac{1}{2} \left(\frac{9}{16} + \left| \frac{d \log T^2}{d \log k} \right| \right)^{-1/2} \left| \frac{d^2 \log T^2}{(d \log k)^2} \right|
\]

What features can we “resurrect” from this relation?
Illustrative Model of Multi-Component Decay Chains

\[T^2(k) = \frac{P(k)}{P_{\text{CDM}}(k)} \]

- \(r = -3 \)
- \(s = -4 \)
- \(r = -3 \)
- \(s = 0 \)
- \(r = -3 \)
- \(s = +4 \)

\[\tilde{g}(k, t_{\text{now}})/N \]

- \(r = 0 \)
- \(s = -4 \)
- \(r = 0 \)
- \(s = 0 \)
- \(r = 0 \)
- \(s = +4 \)

Parameters:
- \(v \)
- \(k [h/\text{Mpc}] \)
- \(v \)
- \(v \)

- \(r \) increasing
- \(s \) increasing

Jeff Kost
Deciphering the Archaeological Record: Cosmological Imprints of Non-Minimal Dark Sectors
CONCLUSIONS

• Early-universe processes such as decays within the dark sector can leave identifiable imprints in $f(p)$ and $P(k)$; certain features may allow us to go backwards and archaeologically reconstruct the dark-matter distribution.
 ◦ We found useful analytical tools, such as hot-fraction function $F(k)$.
 ◦ Conjectured relation that can “resurrect” $f(p)$ features from $P(k)$.

• The dark sectors of string theory generically include unstable KK towers similar to the form we have discussed here, leading to multi-modal $f(p)$ distributions and non-trivial $P(k)$ spectra.

• Such approaches may be only probes for dark sector decoupled from SM.
CONCLUSIONS

• Early-universe processes such as decays within the dark sector can leave identifiable imprints in $f(p)$ and $P(k)$; certain features may allow us to go backwards and archaeologically reconstruct the dark-matter distribution.
 ◦ We found useful analytical tools, such as hot-fraction function $F(k)$.
 ◦ Conjectured relation that can “resurrect” $f(p)$ features from $P(k)$.
• The dark sectors of string theory generically include unstable KK towers similar to the form we have discussed here, leading to multi-modal $f(p)$ distributions and non-trivial $P(k)$ spectra.
• Such approaches may be only probes for dark sector decoupled from SM.

FUTURE WORK/DIRECTIONS:

• How to incorporate effects that come from SM couplings? Could affect evolution of phase-space distributions in some additional subtle ways.
• Incorporation of observational bounds/constraints (Lyman-α, etc.)
• How do these $T^2(k)$ fall within effective theories of structure formation?
• Addressing the non-linear regime...
CONCLUSIONS

• Early-universe processes such as decays within the dark sector can leave identifiable imprints in $f(p)$ and $P(k)$; certain features may allow us to go backwards and archaeologically reconstruct the dark-matter distribution.
 ○ We found useful analytical tools, such as hot-fraction function $F(k)$.
 ○ Conjectured relation that can “resurrect” $f(p)$ features from $P(k)$.

• The dark sectors of string theory generically include unstable KK towers similar to the form we have discussed here, leading to multi-modal $f(p)$ distributions and non-trivial $P(k)$ spectra.

• Such approaches may be only probes for dark sector decoupled from SM.

FUTURE WORK/DIRECTIONS:

• How to incorporate effects that come from SM couplings? Could affect evolution of phase-space distributions in some additional subtle ways.
• Incorporation of observational bounds/constraints (Lyman-α, etc.)
• How do these $T^2(k)$ fall within effective theories of structure formation?
• Addressing the non-linear regime...

THANK YOU FOR YOUR ATTENTION!