Mark Eriksson earns WARF named professorship

Mark Eriksson gives a tour of his research lab

Mark Eriksson has been named the John Bardeen Professor of Physics, through the Wisconsin Alumni Research Foundation (WARF) named professorship program.

The WARF named professorship program provides recognition for distinguished research contributions of the UW–Madison faculty. The awards are intended to honor those faculty who have made major contributions to the advancement of knowledge, primarily through their research endeavors, but also as a result of their teaching and service activities.

profile photo of Mark Eriksson
Mark Eriksson

Eriksson joined the UW–Madison physics faculty in 1999. His research has focused on quantum computing, semiconductor quantum dots, and nanoscience. He currently leads a multi-university team focused on the development of spin qubits in gate-defined silicon quantum dots. A goal of this work is to enable quantum computers, which manipulate information coherently, to be built using many of the materials and fabrication methods that are the foundation of modern, classical integrated circuits.

“If you look back at my work here over the last, it’ll be 21 years in August, it’s almost all been collaborative, and I’ve really enjoyed the people I’ve worked with,” Eriksson says. “Going into the future, those collaborations are going to continue, of course. We have a real opportunity to see what semiconductor fabrication technology can do for qubits and quantum computing — how can we make really high-quality, silicon qubits in a way that leverages and makes use of the same technology that people use to make classical computer chips?”

a group of 7 people
Members of the Eriksson Group at a conference in Spain in Fall 2019.

Eriksson’s past and present UW–Madison collaborators include, in addition to many students and postdocs, physics professors Victor Brar, Sue Coppersmith, Bob Joynt, Shimon Kolkowitz, and Robert McDermott; physics senior scientist Mark Friesen; and materials science and engineering professor Max Lagally and scientist Don Savage.

The WARF program asks recipients to choose the name of their professorship. Eriksson, who graduated with a B.S. in physics and mathematics from UW–Madison in 1992, chose fellow alum John Bardeen — a scientist who has the unique honor of being the only person to receive the Nobel Prize in Physics twice.

“Bardeen was one of the inventors of the transistor, and I work with semiconductor qubits which are very similar to transistors in many ways,” Eriksson explains. “It seemed appropriate to choose him, because he was an alum of the university, he’s a Madison native, and he was co-inventor of the transistor.”

Eriksson was one of 11 UW­–Madison faculty awarded WARF named professorships this year. The honor comes with $100,000 in research funding over five years.

“Prof. Mark Eriksson is a world-leading expert in the development of quantum information systems using solid-state quantum dot qubits,” says Sridhara Dasu, physics department chair. “Recognition of his successes in research and his contribution to the training of researchers in this increasingly promising area of quantum information, through the awarding of WARF professorship, is much deserved.”

Profs Eriksson, McDermott, Vandenbroucke awarded UW2020s

image of research station at south pole plus a purely decorative image on the bottom half

Twelve projects have been chosen for Round 6 of the UW2020: WARF Discovery Initiative, including three from faculty in the Department of Physics (Mark Eriksson, Robert McDermott, and Justin Vandenbroucke). These projects were among 92 proposals submitted from across campus. The initiative is funded by the Office of the Vice Chancellor for Research and Graduate Education and the Wisconsin Alumni Research Foundation.

The projects were reviewed by faculty across the university. The UW2020 Council, a group of 17 faculty from all divisions of the university, evaluated the merits of each project based on the reviews and their potential for making significant contributions to their field of study.

The goal of UW2020 is to stimulate and support cutting-edge, highly innovative and groundbreaking research at UW–Madison and to support acquisition of shared instruments or equipment that will foster significant advances in research.

Acquisition of a cryogen-free Physical Properties Measurement System (PPMS) for characterization of quantum materials and devices

The project addresses a barrier for UW–Madison researchers in measuring electronic, magnetic, and thermal properties of quantum materials at low temperatures, namely the increasing high costs of cryogens (liquid helium) and lack of a convenient means to perform these measurements in a shared facility. Low-temperature electronic, magnetic, and thermal properties of materials are crucial for fundamental materials discovery and for applications in quantum information, nonvolatile memory, and energy conversion devices.

This project will acquire a cryogen-free Physical Properties Measurement System (PPMS) and house it as a shared-user facility instrument within the Wisconsin Centers for Nanotechnology (CNT). This instrument would be open for all UW–Madison users.

Currently, these measurements depend on external collaborations or low-temperature setups in PI labs which either consume large amounts of cryogens or require time-consuming reconfigurations from experiment to experiment. Having a cryogen-free PPMS would allow researchers to spend less time and money in setting up experiments, potentially freeing up resources for scientific investigations that include new superconducting and topological material discoveries and characterizations of materials for advanced microelectronics and magnetic memory systems.

Jason Kawasaki, assistant professor of materials science and engineering

Jerry Hunter, director of the Wisconsin Centers for Nanotechnology

Paul Voyles, professor of materials science and engineering and MRSEC Director

Song Jin, professor of chemistry

Mark Eriksson, professor of physics

Thomas Kuech, professor of chemical and biological engineering

Daniel Rhodes, assistant professor of materials science and engineering

Chang-Beom Eom, professor of materials science and engineering

Paul Evans, professor of materials science and engineering

Michael Arnold, professor of materials science and engineering

Dakotah Thompson, assistant professor of mechanical engineering

Cracking the structure of ice: establishing a cryogenic electron backscatter diffraction and Raman capability at UW–Madison

The structure and physical properties of ice determine the behavior of glaciers, ice sheets, and polar ice caps (both terrestrial and extraterrestrial). Moreover, ice is of interest because of its unique light transmission properties, which are currently being harnessed by one of the world’s largest astrophysical experiments through the UW–led IceCube collaboration.

This project will develop the capability to perform scanning electron microscopy (SEM) of water and CO2 ice in the UW–Madison Geoscience Department, focusing on electron backscatter diffraction (EBSD) analysis for ice microstructure and Raman spectroscopy for ice composition. EBSD of ice is an extremely rare analytical capability worldwide.

Having this highly specialized type of analysis capability for ice will enable advances in glaciology, climate science, physics, materials science and planetary science. This technology can accelerate research on glacial sliding and ice deformation, and inform long-standing questions about the transformation of air bubbles to clathrates in glacial ice and their potential as archives of Earth’s past atmosphere. In addition, understanding the structure of ice is critical, for example, to accurate measurement of cosmic ray interactions in the IceCube Neutrino Observatory.

As the only lab in the U.S. offering combined ice EBSD analysis and ice Raman analysis, UW–Madison will establish itself as a nexus for cryosphere research, attracting many collaborations from outside UW–Madison.

Chloe Bonamici, assistant professor of geoscience

Lucas Zoet, assistant professor of geoscience

Shaun Marcott, associate professor of geoscience

Justin Vandenbroucke, associate professor of physics/WIPAC

John Fournelle, senior scientist of geoscience

Pavana Prabhakar, assistant professor of civil and environmental engineering

Richard Hartel, professor of food engineering

Hiroki Sone, assistant professor of geological engineering

Interdisciplinary engineering of quantum information systems

This project represents a synergistic effort toward engineering practical quantum information systems (QIS). The research unites the experimental superconducting and semiconducting qubit teams on campus with advanced materials characterization and microwave engineering expertise to uncover the underlying sources of decoherence that limit qubit performance and develop next-generation quantum devices for scalable quantum computing and quantum sensing. This effort will build new interdisciplinary connections that nourish the quantum ecosystem at UW–Madison, cutting across departmental and disciplinary lines.

The potential of QIS has been recognized recently by the $1.4 billion federal National Quantum Initiative, and the newly formed Wisconsin Quantum Institute at UW is home to world-leading efforts in the physics of QIS. This project is a next step in expanding these directions to incorporate the engineering effort necessary to develop practical systems capable of solving real-world problems.

Robert McDermott, professor of physics

Mark Eriksson, professor of physics

Susan Hagness, professor of electrical and computer engineering

Paul Voyles, professor of materials science and engineering

Kangwook Lee, professor of electrical and computer engineering